Features and Aggregators for Web-scale Entity Search

نویسندگان

  • Uma Sawant
  • Soumen Chakrabarti
چکیده

We focus on two research issues in entity search: how to score a document or snippet that potentially supports a candidate entity, and how to aggregate or combine scores from different snippets into an entity score. Proximity scoring has been studied in IR outside the scope of entity search. However, aggregation has been hardwired except in a few cases where probabilistic language models are used. We instead explore simple, robust, discriminative ranking algorithms, with informative snippet features and broad families of aggregation functions. Our first contribution is a study of proximity-cognizant snippet features. In contrast with prior work which uses hardwired “proximity kernels” that implement a fixed decay with distance, we present a “universal” feature encoding which jointly expresses the perplexity (informativeness) of a query term match and the proximity of the match to the entity mention. Our second contribution is a study of aggregation functions. Rather than train the ranking algorithm on snippets and then aggregate scores, we directly train on entities such that the ranking algorithm takes into account the aggregation function being used. Our third contribution is an extensive Web-scale evaluation of the above algorithms on two data sets having quite different properties and behavior. The first one is the W3C dataset used in TREC-scale enterprise search, with pre-annotated entity mentions. The second is a Web-scale open-domain entity search dataset consisting of 500 million Web pages, which contain about 8 billion token spans annotated automatically with two million entities from 200,000 entity types in Wikipedia. On the TREC dataset, the performance of our system is comparable to the currently prevalent systems by Balog et al. (using Boolean associations) and MacDonald et al.. On the much larger and noisier Web dataset, our system delivers significantly better performance than all other systems, with 8% MAP improvement over the closest competitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology

Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...

متن کامل

Towards Supporting Exploratory Search over the Arabic Web Content: The Case of ArabXplore

Due to the huge amount of data published on the Web, the Web search process has become more difficult, and it is sometimes hard to get the expected results, especially when the users are less certain about their information needs. Several efforts have been proposed to support exploratory search on the web by using query expansion, faceted search, or supplementary information extracted from exte...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

Seizing the Opportunity: Exploiting Web Aggregation

This paper examines the development of web aggregators, entities that collect information from a wide range of sources, with or without prior arrangements, and add value through post-aggregation services. New Web-page extraction tools, context sensitive mediators, and agent technologies have greatly reduced the barriers to constructing aggregators. We predict that aggregators will soon emerge i...

متن کامل

Leveraging Wikipedia Knowledge for Entity Recommendations

User engagement is a fundamental goal of commercial search engines. In order to increase it, they provide the users an opportunity to explore the entities related to the queries. As most of the queries can be linked to entities in knowledge bases, search engines recommend the entities that are related to the users’ search query. In this paper, we present Wikipedia-based Features for Entity Reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1303.3164  شماره 

صفحات  -

تاریخ انتشار 2013